Nonparametric Quasi-maximum Likelihood Estimation for Gaussian Locally Stationary Processes1 by Rainer Dahlhaus

نویسنده

  • WOLFGANG POLONIK
چکیده

This paper deals with nonparametric maximum likelihood estimation for Gaussian locally stationary processes. Our nonparametric MLE is constructed by minimizing a frequency domain likelihood over a class of functions. The asymptotic behavior of the resulting estimator is studied. The results depend on the richness of the class of functions. Both sieve estimation and global estimation are considered. Our results apply, in particular, to estimation under shape constraints. As an example, autoregressive model fitting with a monotonic variance function is discussed in detail, including algorithmic considerations. A key technical tool is the time-varying empirical spectral process indexed by functions. For this process, a Bernstein-type exponential inequality and a central limit theorem are derived. These results for empirical spectral processes are of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical spectral processes for locally stationary time series

A time-varying empirical spectral process indexed by classes of functions is defined for locally stationary time series. We derive weak convergence in a function space, and prove a maximal exponential inequality and a Glivenko–Cantelli-type convergence result. The results use conditions based on the metric entropy of the index class. In contrast to related earlier work, no Gaussian assumption i...

متن کامل

Efficient Parameter Estimation for Self - Similar Processes

In the paper [1] the author claimed to have established asymptotic normality and efficiency of the Gaussian maximum likelihood estimator (MLE) for long range dependent processes (with the increments of the self-similar fractional Brownian motion as a special case—hence, the title of the paper). The case considered in the paper was Gaussian stationary sequences with spectral densities fθ(x)∼ |x|...

متن کامل

Maximum likelihhood estimation and model selection for nonstationary processes

The Gaussian maximum likelihood estimate is investigated for time series models that have locally a stationary behaviour (e.g. for time varying autoregressive models). The asymptotic properties are studied in the case where the fitted model is either correct or misspecified. For example the behaviour of the maximum likelihood estimate is explained in the case where a stationary model is fitted ...

متن کامل

Asymptotic Theory for Maximum Likelihood Estimation of the Memory Parameter in Stationary Gaussian Processes

Consistency, asymptotic normality and e¢ ciency of the maximum likelihood estimator for stationary Gaussian time series, were shown to hold in the short memory case by Hannan (1973) and in the long memory case by Dahlhaus (1989). In this paper, we extend these results to the entire stationarity region, including the case of antipersistence and noninvertibility. In the process of proving the mai...

متن کامل

Statistical Inference for Time - Varying Arch Processes

In this paper the class of ARCH(∞) models is generalized to the nonstationary class of ARCH(∞) models with time-varying coefficients. For fixed time points, a stationary approximation is given leading to the notation “locally stationary ARCH(∞) process.” The asymptotic properties of weighted quasi-likelihood estimators of time-varying ARCH(p) processes (p < ∞) are studied, including asymptotic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006